Pressure Distribution, Orifice, Pipe \& Pump Sizing

The completed installation is to comply with BC SPM V3

Tables referenced in this worksheet are located in HO 109A
This worksheet is for use to: size the orifices in distribution lateral pipes, size effluent delivery piping, and to calculate the required capacity and pressure head capability of the effluent pump. It can be used for: calculating delivery of effluent to laterals in trenches, seepage beds, mounds and sand filters.

It is intended for use by persons having training in the private sewage discipline.
Use only Metric units of measurement throughout (mm, cm, m, L, etc...).
Step 1) Select the pressure head to be maintained at the orifices:
Minimum pressure at the orifice:
Less than 4.8 mm orifice $=1.5 \mathrm{~m}$ Minimum
4.8 mm or larger orifice $=0.6 \mathrm{~m}$ Minimum
Design pressure at lateral orifices

Note: worksheet will not provide an adequate design if laterals are at different elevations. Differing elevations will result in a different
pressure head and volume of discharge at the orifices in each lateral. Additional considerations must be made for laterals at differing
elevations.

Step 2) Select the size of orifice in the laterals:
Type 1 - best practice minimum of 4.0 mm

Note: larger sizes are less likely to plug.

Step. 3) Select the spacing of orifices and determine the number of orifices to be installed in distribution laterals:

Select a spacing of orifices to attain even distribution over the treatment area:
Maximum spacings are determined for :
*0.56 m² Primary treated effluent
*Use spacing determined by Lateral and Orifice Spacing Worksheet "L"

If laterals are of differing lengths, calculate each separately and add the number of orifices together.

Step 4) Determine the minumum pipe size of the distribution laterals:
Enter the system design information into the 3 boxes below. If distribution laterals are of differing lengths, each lateral must be considered separately.

Use Table A.1.A. (in HO 109A) when applying the information entered in this step to determine the minimum size of the distribution lateral pipe. From Table A.1.A. \square

Step 5) Determine the total flow from all orifices:

Total Number of
\square
From P3b

Orifices in all laterals

Size of Distribution Lateral Pipe

LPM for each Orifice

 at Head Pressure Selected

From Table A.1.B. 2

Step 6) Select the type and size of effluent delivery pipe:

Use Tables A.1.C. 2 or A.1.C. 4 to aid in decision. A larger pipe will reduce pressure loss.

Choose a friction loss from Tables A.1.C. 2 or A.1.C. 4 in between the shaded lines to ensure a flow velocity between 2 to 5 feet per second. The pipe size selcted will affect the amount of friction loss the pump must overcome to deliver effluent.

Step 7) Calculate the equivalent length of pipe for pressure loss due to fittings:

Equivalent Length of All Fittings

Insert total from Worksheet " A " on last page (p .5) of this Pressure Distribution Worksheet

P7
For Pressure Loss

Step 8) Calculate the equivalent length of pipe from pump to the farthest end of header of distribution laterals for pressure loss:

Length of Piping
(m)

Length from pump to farthest end of distribution header supplying laterals.

Equivalent Length of Fittings
(m)

Equivalent fitting length from P7.

Length of Pipe for Friction Loss

Used to determine total pressure head loss due to friction loss in piping.

| Step 8a) Calculate the total length of pipe for friction loss: |
| :---: | :---: | :---: |
| Length of Pipe for Friction Loss (m) |

Step 10) Calculate the total pressure head required at pump:

Step 11) Select the size of the drain back orifice if used and determine the flow from the drain back orifice. Then calculate total flow requirement for pump:

Step 12) Details of the pump specifications required:

Select the appropriate pump by reviewing the pump curve of available pumps. Select a pump that exceeds the requirments set out in this step by approximately 10% considering both pressure head and volume.

Step 13) Consider the pumping demands of the system. If they are considered excessive, redesign the pressure distribution system and recalculate the pump demands.

Worksheet "Appendix A" Determine Equivalent Length of Pipe due to fittings in piping system.

Determine the equivalent length of pipe to allow for friction loss due to fittings in the piping system:

Friction loss as per
Table A.1.C. 5 or 6

Total

$+$

X

$+$

$+$

$=$

Total Equivalent Length of pipe to allow for fittings in piping system
(Enter this total, Box P7) \square

